黑马科技
人工智能

马化腾:相对百度,腾讯在人工智能还是落后不少

时间:2019-09-28

[ 导读 ] 4月2日,由深圳市人民政府、数字中国联合会主办的“2017中国(深圳)IT领袖峰会”在深圳五洲宾馆举行,作为支持媒体受邀参加。现场,马化腾发表了对于人工智能的看法。

2017年4月2日,由深圳市人民政府、数字中国联合会主办的“2017中国(深圳)IT领袖峰会”在深圳五洲宾馆举行,作为支持媒体受邀参加。

出席此次峰会的企业方嘉宾包括阿里巴巴集团董事局主席马云、百度董事长兼首席执行官李彦宏、腾讯董事会主席兼首席执行官马化腾、微软全球执行副总裁沈向洋、创新工场创始人、董事长李开复、数字中国联合会常务理事田溯宁等。

以下是马化腾分享的精彩内容:

1、腾讯在人工智能还是落后不少,相对百度。我们是从去年才开始。

人工智能只是去年刚开始成立的部门。当然在我们所有BG内部结合它的业务形态,像我们微信里面,超过上百亿条消息,包括我们图片、特别是做社交网络,里面有人脸数据图片绝对是天文数字,每天高达上十亿张有人脸照片。这方面的技术研究在各个BG有相当长时间研究。包括后台数据分析、广告匹配都用了人工智能技术,只是大家感受不到,因为它在后端。

2、我们希望做一些前端的内容,因此有了绝艺。

一年前,AlphaGo通过人机对战的事件让全世界对人工智能的认知达到了一个新的高潮,我们团队也本着一种练兵的心态做了个尝试(绝艺),自谷歌的DEEPMIND团队发表了论文之后,全世界很多用计算机技术练习围棋的团队采用深度学习技术,让原有已经走到瓶颈的围棋研究团队有了新的发展方向。

大家不约而同在这一年中起步。我们内部团队有三个团队也在做,只是分在不同部门。这个部门刚好是它能够突破这个瓶颈,也动用了公司相当的大的后端的计算机资源,更大的特点是它和Alpha Go不同的是我们的决议AI的成长,全程得到了国家级围棋世界冠军从一开始的陪练,然后找出它为什么不同。我们十几位研发人员不懂围棋的,一开始连黑先下还是白先下的规则都不懂,我们从计算机原理、工程实现以及结合中国包括很多的专家来去训练。

这里面给我们最大的思考。过去我们对AI很多是从一些规则、从简单的训练得出来的能够改善我们计算处理的这样一种能力,最终我们发现其实还有一个更恐怖、更深层的意义在于他能够在计算机的后台能够用云计算、大数据方式能够高速的自学习,能够自己跟自己对奕。所以AlphaGo出来后,它的下一代master,经历了数十亿盘自我对弈,已经超越过去所有人类交战的盘数,然后它自己寻找规律,找到的已经远远超过人类过去在围棋领域认知的范围,是极大的扩展,这是给我们一个很大的启示。

3、AI在其他的领域可以有更多实际应用。

在很多的领域——围棋以外的领域,不管是医疗(刚才讲的病理的检测),以后的金融,现实中的每个行业,如果能用计算机后台做出一个模拟器,能够让它充分尝试,就像开车一样,你可能不用教自动驾驶怎么开车,就模拟一个现实环境,给它一个规则,让它驾驶,它去撞,有各种反馈,自然会琢磨出一套理论和经验,这是给我们带来巨大思考。在很多领域如果能做出模拟器,定义出很多参数,自己学习,他能找到规律可能远超我们现在想象的。这是我们最大的启示。

4、AI和人之间的关系不是单一方向,是很复杂的

我们这(人工智能)是有一个本质的,就像发现飞机的螺旋桨也好,还是流体动力学,还是鸟的翼,或者是马跑,现阶段(人工智能)还是通过仿生的手段。

在某一些垂直的领域,你现在要做到一个通用的AI非常难,包括围棋也是选一个非常窄的领域,然后给它学习,通过各种参数来训练,刚才郭为提到的用AlphaGo下一盘棋要消耗多少能源。这个垂直领域训练数据是需要消耗很大的能量,但在实际用的时候其实不需要消耗太大的能量。我们绝艺训练出来的单机成本跟职业棋手差不多,但是要训练出这个模型来要很长时间,稍微改一改规则就全部要进行重复训练,改进一点之前的积累都不算,要从头积累一遍,消耗的能量很大,而且时间很长,这是很窄的一个技能模拟。

下一步到通用的,再下一步是不是有更本质性的,发现它背后的原理,智能可以超越人的碳基的智慧,是不是有其他更多的基础元素可以形成更高级的生命智慧呢?这可能是超越人类现在所发现的知识,这也是有可能的。甚至有人还突发奇想说我们现在认识的宇宙就是高智能的生命,用他的量子计算机模拟出来的环境,我们一切都是模拟出来的,也有可能。大家发挥脑洞大开的想象力吧。

5、人工智能和数据应用要看四个因素:场景、数据、计算能力、人才

人工智能我们关注哪几块,第一个是场景。场景就是你想把这个技术应用在什么场景下,你是不是有高频的跟用户接触,这是一个落地的很重要的地方。所以我们看到很多研究院也好,包括我们内部研发团队。如果没有场景落地,没有平台支持,基本上就是空中楼阁,研究一半很难往下走。

第二个是大数据,大数据也是从平台、业务部门有大量实际运转数据才能产生出来。但是这里面很多大数据是垃圾数据,因为没有标签,每人做规划定义,用多好的算法也学不出来,学出来也是走火入魔,没有用的。数据清洗、标签化难度非常高,我们甚至要雇佣很多人用人手的办法,先用人脑清洗干净,再让AI学习。这里面是一个混合结合的过程。

第三,计算能力,也就是你有云的资源,拿几十万核的计算能力,CPU、GPU,我们还是有这个能力的。而且在云里面本身就可以很好的调用,这是我们第三个优势。

第四个,一年前我们比较缺乏的就是人才。通过一年我们也招了挺多的人,我们在微软、在西雅图还设置了一个实验室。因为很多微软的人不愿意离开西雅图,所以我们就在旁边设,没有办法,人才就是这样。几个方面结合起来才有办法真正在某一个领域看到它的成效。

6、腾讯的大规模数据短时间很难实现开放

我们现在观察到很多的AI所谓的大拿们,他们更关注怎么落地,能不能把毕生研究成果能够体现出来,所以在我们内部在吸引人才的时候,往往也会说你们微信、手机QQ里面的平台数据能不能给他们用,但是事实上大家都知道,BG、部门里面的平台他们也很希望近水楼台先得月,数据就在我身边流动,我为什么不能招人先研究一把,为什么给你呢。我们现在还处在内部怎么把数据分享出来这个阶段。

当然这里面还有一个用户很关注的个人隐私,别把我的数据都卖了,到时候大家都知道,这里面还有一个很复杂的信息安全个人隐私脱敏,你是不知道无法根据数据倒推到哪一个人做了什么事情,我们要把这些处理干净才能往下一步谈。这里面数据清理到什么标签,才能给其他部门、包括外部合作伙伴怎么用。同时有很多数据来自合作伙伴,业界其他公司,他们也遇到这样的问题那者一堆裸数据不怎么用,这样业界还要有一个标准,互惠互利交换,这是一个大方向,还有很长的路要走。

想要纵观AI产业?请戳《智库:人工智能产业综述报告》http://www.iyiou.com/p/43122

1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源; 2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任; 3.作者投稿可能会经我们编辑修改或补充。转载请注明模板网#